

flask-mail

One of the most basic functions in a web application is the ability to send
emails to your users.

The Flask-Mail extension provides a simple interface to set up SMTP with your
Flask [http://flask.pocoo.org] application and to send messages from your views and scripts.

Links

	documentation [http://packages.python.org/Flask-Mail/]

	source [http://github.com/mattupstate/flask-mail]

	changelog

Installing Flask-Mail

Install with pip and easy_install:

pip install Flask-Mail

or download the latest version from version control:

git clone https://github.com/mattupstate/flask-mail.git
cd flask-mail
python setup.py install

If you are using virtualenv, it is assumed that you are installing flask-mail
in the same virtualenv as your Flask application(s).

Configuring Flask-Mail

Flask-Mail is configured through the standard Flask config API. These are the available
options (each is explained later in the documentation):

	MAIL_SERVER : default ‘localhost’

	MAIL_PORT : default 25

	MAIL_USE_TLS : default False

	MAIL_USE_SSL : default False

	MAIL_DEBUG : default app.debug

	MAIL_USERNAME : default None

	MAIL_PASSWORD : default None

	MAIL_DEFAULT_SENDER : default None

	MAIL_MAX_EMAILS : default None

	MAIL_SUPPRESS_SEND : default app.testing

	MAIL_ASCII_ATTACHMENTS : default False

In addition the standard Flask TESTING configuration option is used by Flask-Mail
in unit tests (see below).

Emails are managed through a Mail instance:

from flask import Flask
from flask_mail import Mail

app = Flask(__name__)
mail = Mail(app)

In this case all emails are sent using the configuration values of the application that
was passed to the Mail class constructor.

Alternatively you can set up your Mail instance later at configuration time, using the
init_app method:

mail = Mail()

app = Flask(__name__)
mail.init_app(app)

In this case emails will be sent using the configuration values from Flask’s current_app
context global. This is useful if you have multiple applications running in the same
process but with different configuration options.

Sending messages

To send a message first create a Message instance:

from flask_mail import Message

@app.route("/")
def index():

 msg = Message("Hello",
 sender="from@example.com",
 recipients=["to@example.com"])

You can set the recipient emails immediately, or individually:

msg.recipients = ["you@example.com"]
msg.add_recipient("somebodyelse@example.com")

If you have set MAIL_DEFAULT_SENDER you don’t need to set the message
sender explicity, as it will use this configuration value by default:

msg = Message("Hello",
 recipients=["to@example.com"])

If the sender is a two-element tuple, this will be split into name
and address:

msg = Message("Hello",
 sender=("Me", "me@example.com"))

assert msg.sender == "Me <me@example.com>"

The message can contain a body and/or HTML:

msg.body = "testing"
msg.html = "testing"

Finally, to send the message, you use the Mail instance configured with your Flask application:

mail.send(msg)

Bulk emails

Usually in a web application you will be sending one or two emails per request. In certain situations
you might want to be able to send perhaps dozens or hundreds of emails in a single batch - probably in
an external process such as a command-line script or cronjob.

In that case you do things slightly differently:

with mail.connect() as conn:
 for user in users:
 message = '...'
 subject = "hello, %s" % user.name
 msg = Message(recipients=[user.email],
 body=message,
 subject=subject)

 conn.send(msg)

The connection to your email host is kept alive and closed automatically once all the messages have been sent.

Some mail servers set a limit on the number of emails sent in a single connection. You can set the max amount
of emails to send before reconnecting by specifying the MAIL_MAX_EMAILS setting.

Attachments

Adding attachments is straightforward:

with app.open_resource("image.png") as fp:
 msg.attach("image.png", "image/png", fp.read())

See the API for details.

If MAIL_ASCII_ATTACHMENTS is set to True, filenames will be converted to
an ASCII equivalent. This can be useful when using a mail relay that modify mail
content and mess up Content-Disposition specification when filenames are UTF-8
encoded. The conversion to ASCII is a basic removal of non-ASCII characters. It
should be fine for any unicode character that can be decomposed by NFKD into one
or more ASCII characters. If you need romanization/transliteration (i.e ß →
ss) then your application should do it and pass a proper ASCII string.

Unit tests and suppressing emails

When you are sending messages inside of unit tests, or in a development
environment, it’s useful to be able to suppress email sending.

If the setting TESTING is set to True, emails will be
suppressed. Calling send() on your messages will not result in
any messages being actually sent.

Alternatively outside a testing environment you can set MAIL_SUPPRESS_SEND to False. This
will have the same effect.

However, it’s still useful to keep track of emails that would have been
sent when you are writing unit tests.

In order to keep track of dispatched emails, use the record_messages
method:

with mail.record_messages() as outbox:

 mail.send_message(subject='testing',
 body='test',
 recipients=emails)

 assert len(outbox) == 1
 assert outbox[0].subject == "testing"

The outbox is a list of Message instances sent.

The blinker package must be installed for this method to work.

Note that the older way of doing things, appending the outbox to
the g object, is now deprecated.

Header injection

To prevent header injection [http://www.nyphp.org/PHundamentals/8_Preventing-Email-Header-Injection] attempts to send
a message with newlines in the subject, sender or recipient addresses will result in a BadHeaderError.

Signalling support

New in version 0.4.

Flask-Mail now provides signalling support through a email_dispatched signal. This is sent whenever an email is
dispatched (even if the email is not actually sent, i.e. in a testing environment).

A function connecting to the email_dispatched signal takes a Message instance as a first argument, and the Flask
app instance as an optional argument:

def log_message(message, app):
 app.logger.debug(message.subject)

email_dispatched.connect(log_message)

API

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 flask-mail	

 	
 	
 flask_mail	

Index

 F

F

 	
 	flask-mail (module)

 	
 	flask_mail (module)

Flask-Mail Changelog

Here you can see the full list of changes between each Flask-Mail release.

Version 0.9.1

Released September 28 2014

	Add an option for force ASCII file attachments

	Fix force_text function

	Fix some Python 3 support regarding email policy

	Added support ESMTP options

	Fixed various unicode issues related to message attachments, subjects, and email addresses

Version 0.9.0

Released June 14 2013

	Added initial Python 3 support

Version 0.8.2

Released April 11 2013

	Removed annoying stray print statement

Version 0.8.1

Released April 04 2013

	Fixed a bug with the new state object

Version 0.8.0

Released April 03 2013

	Fixed a bug with duplicate recipients

	Changed configuration options to be less confusing

	General API clean as things were happening in a few different places

Version 0.7.6

Released March 11 2013

	Fix bug with cc, and bcc fields not being lists

Version 0.7.5

Released March 03 2013

	Fix bug with non-ascii characters in email address

	MAIL_FAIL_SILENTLY config value defaults to False

	Bcc header no longer set as some mail servers forward it to the recipient

Version 0.7.4

Released November 20th 2012

	Allow messages to be sent without a body

Version 0.7.3

Released September 27th 2012

	Add extra_headers to Message class

Version 0.7.2

Released September 16th 2012

	Add __str__ method to Message class

	Add message character set option which defaults to utf-8

Version 0.7.1

Released September 5th 2012

	Date and message ID headers specified

Version 0.7 and prior

Initial development by Dan Jacob and Ron DuPlain. Previously there was not a change log.

 nav.xhtml

 Table of Contents

 		
 flask-mail

_static/file.png

_static/ajax-loader.gif

_static/flask-mail.jpg
‘9 flask-mail

_static/down.png

_static/plus.png

_static/flask-mail.png
_F)flask-mail

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

